
The Infeasibility of Experimental Quanti�cation of Life-Critical

Software Reliability

Ricky W. Butler

George B. Finelli

NASA Langley Research Center

Mail Stop 130

Hampton, VA 23665{5225

(804)864-6198

Arpanet address: rwb@air12.larc.nasa.gov �

Abstract

This paper a�rms that quanti�cation of life-critical
software reliability is infeasible using statistical meth-
ods whether applied to standard software or fault-
tolerant software. The key assumption of software
fault tolerance|separately programmed versions fail
independently|is shown to be problematic. This as-
sumption cannot be justi�ed by experimentation in the
ultrareliability region and subjective arguments in its
favor are not su�ciently strong to justify it as an ax-
iom. Also, the implications of the recent multiversion
software experiments support this a�rmation.

Index Terms: LIFE-CRITICAL, VALIDATION,
SOFTWARE RELIABILITY,
DESIGN ERROR,
ULTRARELIABILITY,
SOFTWARE FAULT-TOLERANCE,

1 Introduction

The potential of enhanced
exibility and functionality
has led to an ever increasing use of digital computer
systems in control applications. At �rst, the digital
systems were designed to perform the same functions
as their analog counterparts. However, the availabil-
ity of enormous computing power at a low cost has led
to expanded use of digital computers in current applica-
tions and their introduction into many new applications.

�Presented at the ACM SIGSOFT `91 Conference on

Software for Critical Systems, New Orleans, Dec. 4-6, 1991,

(Software Engineering Notes, Vol. 16, No. 5, pp. 66-76).

Thus, larger and more complex systems are being de-
signed. The result has been, as promised, increased per-
formance at a minimal hardware cost; however, it has
also resulted in software systems which contain more
errors. Sometimes, the impact of a software bug is
nothing more than an inconvenience. At other times
a software bug leads to costly downtime. But what will
be the impact of design
aws in software systems used
in life-critical applications such as industrial-plant con-
trol, aircraft control, nuclear-reactor control, or nuclear-
warhead arming? What will be the price of software
failure as digital computers are applied more and more
frequently to these and other life-critical functions? Al-
ready, the symptoms of using insu�ciently reliable soft-
ware for life-critical applications are appearing [7, 14, 3].

For many years, much research has focused on the
quanti�cation of software reliability. Research e�orts
started with reliability growth models in the early
1970's. In recent years, an emphasis on developing
methods which enable reliability quanti�cation of soft-
ware used for life-critical functions has emerged. The
common approach which is o�ered is the combination
of software fault-tolerance and statistical models.

In this paper, we will investigate the software reliabil-
ity problem from two perspectives. We will �rst explore
the problems which arise when you test software as a
black box, i.e. subject it to inputs and check the out-
puts without examination of internal structure. Then,
we will examine the problems which arise when software
is not treated as a black box, i.e. some internal structure
is modeled. In either case, we argue that the associated
problems are intractable|i.e., they inevitably lead to a
need for testing beyond what is practical.

1

2 Software Reliability

For life-critical applications, the validation process must
establish that system reliability is extremely high. His-
torically, this ultrahigh reliability requirement has been
translated into a probability of failure on the order of
10�7 to 10�9 for 1 to 10 hour missions. Unfortunately,
such probabilities create enormous problems for valida-
tion. For convenience, we will use the following termi-
nology:

name failure rate (per hour)
ultrareliability < 10�7

moderate reliability 10�3 to 10�6

low reliability > 10�3

Software does not physically fail as hardware does.
Physical failures (as opposed to hardware design
aws)
occur when hardware wears out, breaks, or is adversely
a�ected by environmental phenomena such as electro-
magnetic �elds or alpha particles. Software is not sub-
ject to these problems. Software faults are present at
the beginning of and throughout a system's lifetime.
To such an extent, software reliability is meaningless|
software is either correct or incorrect with respect to
its speci�cation. Nevertheless, software systems are em-
bedded in stochastic environments. These environments
subject the software program to a sequence of inputs
over time. For each input, the program produces either
a correct or an incorrect answer. Thus, in a systems con-
text, the software system produces errors in a stochastic
manner; the sequence of errors behaves like a stochastic
point process.
In this paper, the inherent di�culty of accurately

modeling software reliability will be explored. To fa-
cilitate the discussion, we will construct a simple model
of the software failure process. The driver of the failure
process is the external system that supplies inputs to
the program. As a function of its inputs and internal
state, the program produces an output. If the software
were perfect, the internal state would be correct and the
outputs produced would be correct. However, if there is
a design
aw in the program, it can manifest itself either
by production of an erroneous output or by corruption
of the internal state (which may a�ect subsequent out-
puts).
In a real-time system, the software is periodically

scheduled, i.e. the same program is repeatedly executed
in response to inputs. It is not unusual to �nd \iteration
rates" of 10 to 100 cycles per second. If the probability
of software failure per input is constant, say p, we have
a binomial process. The number of failures Sn after n
inputs is given by the binomial distribution:

P (Sn = k) =

�
n

k

�
pk(1� p)n�k

We wish to compute the probability of system failure for
n inputs. System failure occurs for all Sn > 0. Thus,

Psys(n) = P (Sn > 0) = 1� P (Sn = 0) = 1� (1� p)n

This can be converted to a function of time with the
transformation n = Kt where K = the number of inputs
per unit time. The system failure probability at time t,
Psys(t), is thus:

Psys(t) = 1� (1� p)Kt (1)

Of course, this calculation assumes that the probability
of failure per input is constant over time.1

This binomial process can be accurately approxi-
mated by an exponential distribution since p is small
and n is large:

Psys(t) = 1� e�Ktp

This is easily derived using the Poisson approximation
to the binomial. The discrete binomial process can thus
be accurately modeled by a continuous exponential pro-
cess. In the following discussion, we will frequently use
the exponential process rather than the binomial pro-
cess to simplify the discussion.

3 Analyzing Software as a Black

Box

The traditional method of validating reliability is life
testing. In life testing, a set of test specimens are oper-
ated under actual operating conditions for a predeter-
mined amount of time. Over this period, failure times
are recorded and subsequently used in reliability com-
putation. The internal structure of the test specimens
is not examined. The only observable is whether a spec-
imen has failed or not.
For systems that are designed to attain a probabil-

ity of failure on the order of 10�7 to 10�9 for 1 hour
missions or longer, life testing is prohibitively imprac-
tical. This can be shown by an illustrative example.
For simplicity, we will assume that the time to failure

1If the probability of failure per input were not constant,
then the reliability analysis problem is even harder. One

would have to estimate p(t) rather than just p. A time-

variant system would require even more testing than a time-
invariant one, since the rate must be determined as a func-

tion of mission time. The system would have to be placed

in a random state corresponding to a speci�c mission time
and subjected to random inputs. This would have to be

done for each time point of interest within the mission time.

Thus, if the reliability analysis is intractable for systems with
constant p, it is unrealistic to expect it to be tractable for

systems with non-constant p(t).

2

distribution is exponential.2 Using standard statisti-
cal methods [11], the time on test can be estimated for
a speci�ed system reliability. There are two basic ap-
proaches: (1) testing with replacement and (2) testing
without replacement. In either case, one places n items
on test. The test is �nished when r failures have been
observed. In the �rst case, when a device fails a new
device is put on test in its place. In the second case, a
failed device is not replaced. The tester chooses values
of n and r to obtain the desired levels of the � and �

errors (i.e., the probability of rejecting a good system
and the probability of accepting a bad system respec-
tively.) In general, the larger r and n are, the smaller
the statistical estimation errors are. The expected time
on test can be calculated as a function of r and n. The
expected time on test, Dt, for the replacement case is:

Dt = �o
r

n
(2)

where �o is the mean failure time of the test specimen
[11]. The expected time on test for the non-replacement
case is:

Dt = �o

rX
j=1

1

n� j + 1
(3)

Even without specifying an � or � error, a good in-
dication of the testing time can be determined. Clearly,
the number of observed failures r must be greater than
0 and the total number of test specimens n must be
greater than or equal to r. For example, suppose the
system has a probability of failure of 10�9 for a 10 hour
mission. Then the mean time to failure of the system
(assuming exponentially distributed) �o is:

�o =
10

�ln[1� 10�9]
� 1010

Table 1 shows the expected test duration for this sys-
tem as a function of the number of test replicates n for
r = 1.3 It should be noted that a value of r equal to 1
produces the shortest test time possible but at the price
of extremely large � and � errors. To get satisfactory
statistical signi�cance, larger values of r are needed and
consequently even more testing. Therefore, given that
the economics of testing fault-tolerant systems (which
are very expensive) rarely allow n to be greater than
10, life-testing is clearly out of the question for ultra-
reliable systems. The technique of statistical life-testing
is discussed in more detail in the appendix.

2In the previous section the exponential process was

shown to be an accurate approximation to the discrete bi-

nomial software failure process.
3The expected time with or without replacement is al-

most the same in this case.

no. of replicates (n) Expected Test Duration Dt

1 1010 hours = 1141550 years
10 109 hours = 114155 years
100 108 hours = 11415 years
10000 106 hours = 114 years

Table 1: Expected Test Duration For r=1

4 Reliability Growth Models

The software design process involves a repetitive cycle
of testing and repairing a program. A program is sub-
jected to inputs until it fails. The cause of failure is
determined; the program is repaired and is then sub-
jected to a new sequence of inputs. The result is a se-
quence of programs p1; p2; :::; pn and a sequence of inter-
failure times T1; T2; :::; Tn (usually measured in number
of inputs). The goal is to construct a mathematical
technique (i.e. model) to predict the reliability of the �-
nal program pn based on the observed interfailure data.
Such a model enables one to estimate the probability
of failure of the �nal \corrected" program without sub-
jecting it to a sequence of inputs. This process is a form
of prediction or extrapolation and has been studied in
detail [1, 10, 8]. These models are called \Reliability
Growth Models". If one resists the temptation to cor-
rect the program based on the last failure, the method
is equivalent to black-box testing the �nal version. If
one corrects the �nal version and estimates the reliabil-
ity of the corrected version based on a reliability growth
model, one hopefully has increased the e�ciency of the
testing process in doing so. The question we would like
to examine is how much e�ciency is gained by use of a
reliability growth model and is it enough to get us into
the ultrareliable region. Unfortunately, the answer is
that the gain in e�ciency is not anywhere near enough
to get us into the ultrareliable region. This has been
pointed out by several authors. Keiller and Miller write
[4]:

The reliability growth scenario would start
with faulty software. Through execution of
the software, bugs are discovered. The soft-
ware is then modi�ed to correct for the de-
sign
aws represented by the bugs. Gradu-
ally the software evolves into a state of higher
reliability. There are at least two general rea-
sons why this is an unreasonable approach to
highly-reliable safety-critical software. The
time required for reliability to grow to ac-
ceptable levels will tend to be extremely long.
Extremely high levels of reliability cannot be

3

guaranteed a priori.

Littlewood writes [9]:

Clearly, the reliability growth techniques of
x2 [a survey of the leading reliability growth

models] are useless in the face of such ultra-
high reliability requirements. It is easy to see
that, even in the unlikely event that the sys-
tem had achieved such a reliability, we could
not assure ourselves of that achievement in an
acceptable time.

The problem alluded to by these authors can be seen
clearly by applying a reliability growth model to exper-
imental data. The data of table 2 was taken from an
experiment performed by Nagel and Skrivan [13]. The

version failure probability per input
1 0.9803
2 0.1068
3 0.002602
4 0.002104
5 0.001176
6 0.0007659

Table 2: Nagel Data From Program A1

data in this table was obtained for program A1, one of
six programs investigated. The versions represent the
successive stages of the program as bugs were removed.
A log-linear growth model was postulated and found to
�t all 6 programs analyzed in the report. Even if the
log-linear model was found to apply to the ultrareliable
region, it would not alleviate the problem. Let's suppose
the debugging process was continued on the above pro-
gram until it reached ultrareliability. From the growth
model we can estimate how many bugs would have to
be removed from this program in order to get it to the
ultrareliable region. A simple regression on the data of
table 2 yields a slope and y-intercept of: �1:415 and
:2358, respectively. The correlation coe�cient is -0.913.
Even if the system were extremely slow, say 1 input
processed per minute, the failure rate per input must
be less than 10�9=60 = 1:67 � 10�11 in order for the
program to have a failure rate of 10�9=hour. Using the
regression results, it can be seen that approximately 17
bugs must be removed:

bug failure rate per input
16 1:87332� 10�10

17 4:55249� 10�11

18 1:10633� 10�11

Thus one could test until 17 bugs have been removed,
remove the last bug and use the reliability growth model
to predict a failure rate per input of 1:106�10�11. But,
how long would it take to remove the 17 bugs? Well,
the removal of the last bug alone would on average re-
quire approximately 2:2 � 1010 test cases. Even if the
testing process were 1000 times faster than the opera-
tional time per input (i.e. one input tested in 60/1000
secs)4, this would require 42 years of testing. Thus, we
see why Littlewood, Keiller and Miller see little hope
of using reliability growth models for ultrareliable soft-
ware. This problem is not restricted to the program
above but is universal. Table 3 repeats the above cal-
culations for the rest of the programs in reference [13].5

At even the most optimistic improvement rates, it is

program slope y-intercept last bug test time
A1 -1.415 2.358 17 42 years
B1 -1.3358 1.1049 19 66 years
A2 -1.998 2.4572 13 31 years
B2 -3.623 2.3296 7 19 years
A3 -.54526 -1.3735 42 66 years
B3 -1.3138 0.0912 19 32 years

Table 3: Test Time To Remove the Last Bug to

Obtain Ultrareliability

obvious that reliability growth models are impractical
for ultrareliable software. If the number of inputs per
hour is increased to the more typical values of 10,000 to
100,000, then the above test times reach into the tens
and hundreds of thousands of years.

5 Software Fault Tolerance

Since fault tolerance has been successfully used to pro-
tect against hardware physical failures, it seems natural
to apply the same strategy against software bugs. It
is easy to construct a reliability model of a system de-
signed to mask physical failures using redundant hard-
ware and voting. The key assumption which enables
both the design of ultrareliable systems from less reliable
components and the estimation of 10�9 probabilities of
failure is that the separate redundant components fail
independently or nearly so. The independence assump-
tion has been used in hardware fault tolerance mod-

4This is very optimistic since one must not only run the

test cases but also determine whether the answer is correct

or not.
5Table 3 assumes a perfect �t with the log-linear model

in the ultrareliable region.

4

elling for many years. If the redundant components are
located in separate chassis, powered by separate power
supplies, electrically isolated from each other and suf-
�ciently shielded from the environment it is not unrea-
sonable to assume failure independence of physical hard-
ware faults.
The basic strategy of the software fault-tolerance ap-

proach is to design several versions of a program from
the same speci�cation and to employ a voter of some
kind to protect the system from bugs. The voter can
be an acceptance test (i.e., recovery blocks) or a com-
parator (i.e., N-version programming). Each version is
programmed by a separate programming team.6 Since
the versions are developed by separate programming
teams, it is hoped that the redundant programs will
fail independently or nearly so [2, 15]. From the ver-
sion reliability estimates and the independence assump-
tion, system reliability estimates could be calculated.
However, unlike hardware physical failures which are
governed by the laws of physics, programming errors
are the products of human reasoning (i.e., actually im-
proper reasoning). The question thus becomes one of
the reasonableness of assuming independence based on
little or no practical or theoretical foundations. Subjec-
tive arguments have been o�ered on both sides of this
question. Unfortunately, the subjective arguments for
multiple versions being independent are not compelling
enough to qualify it as an axiom. The reasons why
experimental justi�cation of independence is infeasible
and why ultrareliable quanti�cation is infeasible despite
software fault tolerance are discussed in the next sec-
tion.

5.1 Models of Software Fault Tolerance

Many reliability models of fault-tolerant software have
been developed based on the independence assumption.
To accept such a model, this assumption must be ac-
cepted. In this section, it will be shown how the inde-
pendence assumption enables quanti�cation in the ul-
trareliable region, why quanti�cation of fault-tolerant
software reliability is unlikely without the independence
assumption, and why this assumption cannot be exper-
imentally justi�ed for the ultrareliable region.

5.1.1 Independence enables quanti�cation

of ultrareliability

The following example will show how independence en-
ables ultrareliability quanti�cation. Suppose three dif-

6Often these separate programming teams are called \in-

dependent programming" teams. The phrase \independent

programming" does not mean the same thing as \indepen-

dent manifestation of errors."

ferent versions of a program control a life-critical system
using some software fault tolerance scheme. Let Ei;k be
the event that the ith version fails on its kth execution.
Suppose the probability that version i fails during the
kth execution is pi;k. As discussed in section 2, we will
assume that the failure rate is constant. Since the ver-
sions are voted, the system does not fail unless there
is a coincident error, i.e., two or more versions produce
erroneous outputs in response to the same input. The
probability that two or more versions fail on the kth
execution causing system failure is:

Psys;k = P ((E1;k ^E2;k) or (E1;k ^E3;k) or
(E2;k ^E3;k) or (E1;k ^E2;k ^E3;k))

(4)
Using the additive law of probability, this can be written
as:

Psys;k = P (E1;k ^E2;k) + P (E1;k ^E3;k)
+P (E2;k ^E3;k)
�2P (E1;k ^E2;k ^E3;k)

(5)

If independence of the versions is assumed, this can be
rewritten as:

Psys;k = P (E1;k)P (E2;k) + P (E1;k)P (E3;k)
+P (E2;k)P (E3;k)
�2P (E1;k)P (E2;k)P (E3;k)

(6)

The reason why independence is usually assumed is ob-
vious from the above formula|if each P (Ei;k) can be
estimated to be approximately 10�6, then the proba-
bility of system failure due to two or more coincident
failures is approximately 3� 10�12.

Equation (6) can be used to calculate the probability
of failure for a T hour mission. Suppose P (Ei;k) = p for
all i and k. Then

Psys;k = 3p2 � 2p3 � 3p2

and the probability that the system fails during a mis-
sion of T hours can be calculated using equation (1):

Psys(T) = 1� (1� Psys;k)
KT

� 1� (1� 3p2)KT

where K = the number of executions of the program in
an hour. For small pi the following approximation is
accurate:

Psys(T) � 1� e(�3p
2KT) � 3p2KT

For the following typical values of T = 1 and K = 3600
(i.e., 1 execution per second), we have

Psys(T) � 3p2KT = 3(10�6)(10�6)(3600) = 1:08�10�8

5

Thus, an ultrareliability quanti�cation has been made.
But, this depended critically on the independence as-
sumption. If the di�erent versions do not fail indepen-
dently, then equation (4) must be used to compute fail-
ure probabilities and the above calculation is meaning-
less. In fact, the probability of failure could be anywhere
from 0 to about 10�2 (i.e., 0 to 3pKT 7).

5.1.2 Ultrareliable quanti�cation is infeasi-

ble without independence

Now consider the impact of not being able to assume in-
dependence. The following argument was adapted from
Miller [12]. To simplify the notation, the last subscript
will be dropped when referring to the kth execution
only. Thus,

Psys = P (E1 ^E2) + P (E1 ^E3) + P (E2 ^E3)
�2P (E1 ^E2 ^E3)

(7)
Using the identity P (A^B) = P (A)P (B)+[P (A^B)�
P (A)P (B)], this can be rewritten as:

Psys = P (E1)P (E2) + P (E1)P (E3) + P (E2)P (E3)
�2P (E1)P (E2)P (E3)
+[P (E2 ^E1)� P (E1)P (E2)]
+[P (E3 ^E1)� P (E3)P (E1)]
+[P (E3 ^E2)� P (E3)P (E2)]
�2[P (E1 ^E2 ^E3) � P (E1)P (E2)P (E3)]

(8)
This rewrite of the formula reveals two components of
the system failure probability: (1) the �rst two lines
of equation 8 and (2) the last 4 lines of equation 8.
If the multiple versions manifest errors independently,
then the last four lines (i.e. the second component) will
be equal to zero. Consequently, to establish indepen-
dence experimentally, these terms must be shown to be
0. Realistically, to establish \adequate" independence,
these terms must be shown to have negligible e�ect on
the probability of system failure. Thus, the �rst com-
ponent represents the \non-correlated" contribution to
Psys and the second component represents the \corre-
lated" contribution to Psys. Note that the terms in the
�rst component of Psys are all products of the individual
version probabilities.
If we cannot assume independence, we are back to

the original equation (7). Since P (E1 ^ E2 ^ E3) �
P (Ei ^Ej) for all i and j, we have

P (Ei ^Ej) � Psys for all i; j:

Clearly, if Psys < 10�9 then P (Ei^Ej) < 10�9. In other
words, in order for Psys to be in the ultrareliable region,

73pKT is a �rst-order approximation to the probability

that the system fails whenever any one of the 3 versions fail.

the interaction terms (i.e. P (Ei ^Ej)) must also be in
the ultrareliable region. To establish that the system
is ultrareliable, the validation must either demonstrate
that these terms are very small or establish that Psys
is small by some other means (from which we could
indirectly deduce that these terms are small.) Thus, we
are back to the original life-testing problem again.
From the above discussion, it is tempting to conclude

that it is necessary to demonstrate that each of the in-
teraction terms is very small in order to establish that
Psys is very small. However, this is not a legitimate
argument. Although the interaction terms will always
be small when Psys is small, one cannot argue that the
only way of establishing that Psys is small is by show-
ing that the interaction terms are small. However, the
likelihood of establishing that Psys is very small with-
out directly establishing that all of the interaction terms
are small appears to be extremely remote. This follows
from the observation that without further assumptions,
there is little more that can be done with equation (7).
It seems inescapable that no matter how (7) is manipu-
lated, the terms P (Ei^Ej) will enter in linearly. Unless,
a form can be found where these terms are eliminated
altogether or appear in a non-linear form where they
become negligible (e.g. all multiplied by other param-
eters), the need to estimate them directly will remain.
Furthermore, the information contained in these terms
must appear somewhere. The dependency of Psys on
some formulation of interaction cannot be eliminated.
Although the possibility that a method may be dis-

covered for the validation of software fault-tolerance re-
mains, it is prudent to recognize where this opportunity
lies. It does not lie in the realm of controlled exper-
imentation. The only hope is that a reformulation of
equation (7) can be discovered that enables the estima-
tion of Psys from a set of parameters which can be esti-
mated using moderate amounts of testing. The e�cacy
of such a reformulation could be assessed analytically
before any experimentation.

5.1.3 Danger of extrapolation to the ultra-

reliability region

To see the danger in extrapolating from a feasible
amount of testing that the di�erent versions are inde-
pendent, we will consider some possible scenarios for co-
incident failure processes. Suppose that the probability
of failure of a single version during a 1 hour interval is
10�5. If the versions fail independently, then the prob-
ability of a coincident error is on the order of 10�10.
However, suppose in actuality the arrival rate of a coin-
cident error is 10�7=hour. One could test for 100 years
and most likely not see a coincident error. From such
experiments it would be tempting to conclude that the

6

di�erent versions are independent. After all, we have
tested the system for 100 years and not seen even one
coincident error! If we make the independence assump-
tion, the system reliability is (1� 3� 10�10). But actu-
ally the system reliability is approximately (1� 10�7).
Likewise, if the failure rate for a single version were
10�4=hour and the arrival rate of coincident errors were
10�5=hour, testing for one year would most likely result
in no coincident errors. The erroneous assumption of in-
dependence would allow the assignment of a 3 � 10�8

probability of failure to the system when in reality the
system is no better than 10�5.
In conclusion, if independence cannot be assumed,

it seems inescapable that the intersection of the events
E1; E2; and E3 (i.e. P (Ei ^Ej)) must be directly mea-
sured. As shown above, these occur in the system fail-
ure formula not as products, but alone, and thus must
be less than 10�12 per input in order for the system
probability of failure to be less than 10�9 at 1 hour.
Unfortunately, testing to this level is infeasible and ex-
trapolation from feasible amounts of testing is danger-
ous.
Since ultrareliability has been established as a re-

quirement for many systems, there is great incentive
to create models which enable an estimate in the ul-
trareliable region. Thus, there are many examples of
software reliability models for operational ultrareliable
systems. Given the rami�cations of independence on
fault-tolerant software reliability quanti�cation, unjus-
ti�able assumptions must not be overlooked.

5.2 Feasibility of a General Model For

Coincident Errors

Given the limitations imposed by non-independence,
one possible approach to the ultrareliability quanti�ca-
tion problem is to develop a general fault-tolerant soft-
ware reliability model that accounts for coincident er-
rors. Two possibilities exist:

1. The model includes terms which cannot be mea-
sured within feasible amounts of time.

2. The model includes only parameters which can be
measured within feasible amounts of time.

It is possible to construct elaborate probability mod-
els which fall into the �rst class. Unfortunately since
they depend upon unmeasurable parameters, they are
useless for the quanti�cation of ultrareliability. The sec-
ond case is the only realistic approach.8 The indepen-
dence model is an example of the second case. Mod-
els belonging to the second case must explicitly or im-

8The �rst case is included for completeness and because

such models have been proposed in the past.

plicitly express the interaction terms in equation (7) as
\known" functions of parameters which can be mea-
sured in feasible amounts of time. The known function
in the independence model is the zero function, i.e., the
interaction terms are zero identically irrespective of any
other measurable parameters.
A more general model must provide a mechanism

that makes these interaction terms negligibly small in
order to produce a number in the ultrareliable region.
These known functions must be applicable to all cases of
multi-version software for which the model is intended.
Clearly, any estimation based on such a model would
be strongly dependent upon correct knowledge of these
functions. But how can these functions be determined?
There is little hope of deriving them from fundamen-
tal laws, since the error process occurs in the human
mind. The only possibility is to derive them from exper-
imentation, but experimentation can only derive func-
tions appropriate for low or moderate reliability soft-
ware. Therefore, the correctness of these functions in
the ultrareliable region can not be established experi-
mentally. Justifying the correctness of the known func-
tions requires far more testing than quantifying the reli-
ability of a single ultrareliable system. The model must
be shown to be applicable to a speci�ed sample space
of multi-version programs. Thus, there must be exten-
sive sampling from the space of multi-version programs,
each of which must undergo life-testing for over 100,000
years in order to demonstrate the universal applicabil-
ity of the functions. Thus, in either case, the situation
appears to be hopeless|the development of a credible
coincident error model which can be used to estimate
system reliability within feasible amounts of time is not
possible.

5.3 The Coincident-Error Experiments

Experiments have been performed by several researchers
to investigate the coincident error process. The �rst
and perhaps most famous experiment was performed by
Knight and Leveson [5]. In this experiment 27 versions
of a program were produced and subjected to 1,000,000
input cases. The observed average failure rate per input
was 0.0007. The major conclusion of the experiment was
that the independence model was rejected at the 99%
con�dence level. The quantity of coincident errors was
much greater than that predicted by the independence
model. Experiments produced by other researchers have
con�rmed the Knight-Leveson conclusion [15, 16]. A
excellent discussion of the experimental results is given
in [6].
Some debate [6] has occurred over the credibility of

these experiments. Rather than describe the details of
this debate, we would prefer to make a few general ob-

7

servations about the scope and limitations of such ex-
periments. First, the N-version systems used in these
experiments must have reliabilities in the low to mod-
erate reliability region. Otherwise, no data would be
obtained which would be relevant to the independence
question.9 It is not su�cient (to get data) that the indi-
vidual versions are in this reliability region. The coinci-
dent error rate must be observable, so the reliability of
\voted" outputs must be in the low to moderate reliabil-
ity region. To see this consider the following. Suppose
that we have a 3-version system where each replicate's
failure rate is 10�4=hour. If they fail independently,
the coincident error rate should be 3� 10�8=hour. The
versions are in the moderate reliability region, but the
system is potentially (i.e. if independent) in the ultra-
reliable region. In order to test for independence, \co-
incident" errors must be observed. If the experiment
is performed for one year and no coincident errors are
observed, then one can be con�dent that the coincident
error rate (and consequently the system failure rate) is
less than 1:14� 10�4. If coincident errors are observed
then the coincident error rate is probably even higher.
If the coincident error rate is actually 10�7=hour, then
the independence assumption is invalid, but one would
have to test for over 1000 years in order to have a reason-
able chance to observe them! Thus, future experiments
will have one of the following results depending on the
actual reliability of the test specimens:

1. demonstration that the independence assumption
does not hold for the low reliability system.

2. demonstration that the independence assumption
does hold for systems for the low reliability system.

3. no coincident errors were seen but the test time
was insu�cient to demonstrate independence for
the potentially ultrareliable system.

If the system under test is a low reliability system, the
independence assumption may be contradicted or vin-
dicated. Either way, the results will not apply to ul-
trareliable systems except by way of extrapolation. If
the system under test were actually ultrareliable, the
third conclusion would result. Thus, experiments can
reveal problems with a model such as the independence
model when the inaccuracies are so severe that they
manifest themselves in the low or moderate reliability
region. However, software reliability experiments can
only demonstrate that an interaction model is inaccu-
rate, never that a model is accurate for ultrareliable
software. Thus, negative results are possible, but never
positive results.

9that is, unless one was willing to carry out a \Smith-

sonian" experiment, i.e. one which requires centuries to

complete.

The experiments performed by Knight and Leveson
and others have been useful to alerting the world to
a formerly unnoticed critical assumption. However, it
is important to realize that these experiments cannot
accomplish what is really needed|namely, to establish
with scienti�c rigor that a particular design is ultra-
reliable or that a particular design methodology pro-
duces ultrareliable systems. This leaves us in a terrible
bind. We want to use digital processors in life-critical
applications, but we have no feasible way of establishing
that they meet their ultrareliability requirements. We
must either change the reliability requirements to a level
which is in the low to moderate reliability region or give
up the notion of experimental quanti�cation. Neither
option is very appealing.

6 Conclusions

In recent years, computer systems have been introduced
into life-critical situations where previously caution had
precluded their use. Despite alarming incidents of dis-
aster already occurring with increasing frequency, in-
dustry in the United States and abroad continues to ex-
pand the use of digital computers to monitor and control
complex real-time physical processes and mechanical de-
vices. The potential performance advantages of using
computers over their analog predecessors have created
an atmosphere where serious safety concerns about digi-
tal hardware and software are not adequately addressed.
Although fault-tolerance research has discovered e�ec-
tive techniques to protect systems from physical compo-
nent failure, practical methods to prevent design errors
have not been found. Without a major change in the
design and veri�cation methods used for life-critical sys-
tems, major disasters are almost certain to occur with
increasing frequency.

Since life-testing of ultrareliable software is infeasi-
ble (i.e., to quantify 10�8=hour failure rate requires
more than 108 hours of testing), reliability models of
fault-tolerant software have been developed from which
ultrareliable-system estimates can be obtained. The key
assumption which enables an ultrareliability prediction
for hardware failures is that the electrically isolated pro-
cessors fail independently. This assumption is reason-
able for hardware component failures, but not provable
or testable. This assumption is not reasonable for soft-
ware or hardware design
aws. Furthermore, any model
which tries to include some level of non-independent in-
teraction between the multiple versions can not be justi-
�ed experimentally. It would take more than 108 hours
of testing to make sure there are not coincident errors
in two or more versions which appear rarely but fre-
quently enough to degrade the system reliability below

8

(1� 10�8).

Some signi�cant conclusions can be drawn from the
observations of this paper. Since digital computers will
inevitably be used in life-critical applications, it is nec-
essary that \credible" methods be developed for gen-
erating reliable software. Nevertheless, what consti-
tutes a \credible" method must be carefully reconsid-
ered. A pervasive view is that software validation must
be accomplished by probabilistic and statistical meth-
ods. The shortcomings and pitfalls of this view have
been expounded in this paper. Based on intuitive mer-
its, it is likely that software fault tolerance will be used
in life-critical applications. Nevertheless, the ability of
this approach to generate ultrareliable software cannot
be demonstrated by research experiments. The question
of whether software fault tolerance is more e�ective than
other design methodologies such as formal veri�cation
or vice versa can only be answered for low or moder-
ate reliability systems, not for ultrareliable applications.
The choice between software fault tolerance and formal
veri�cation must necessarily be based on either extrap-
olation or nonexperimental reasoning.

Similarly, experiments designed to compare the accu-
racy of di�erent types of software reliability models can
only be accomplished in the low to moderate reliability
regions. There is little reason to believe that a model
which is accurate in the moderate region is accurate in
the ultrareliable region. It is possible that models which
are inferior to other models in the moderate region are
superior in the ultrareliable region|again, this cannot
be demonstrated.

Appendix

In this section, the statistics of life testing will be brie
y
reviewed. A more detailed presentation can be found in
a standard statistics text book such as Mann-Schafer-
Singpurwalla [11]. This section presents a statistical
test based on the maximum likelihood ratio10 and was
produced using reference [11] extensively. The mathe-
matical relationship between the number of test speci-
mens, specimen reliability, and expected time on test is
explored.

Let n = the number of test
specimens

r = observed number of
specimen failures

X1 < X2 < ::: < Xr = the ordered failure times

10The maximum likelihood ratio test is the test which pro-

vides the \best" critical region for a given � error.

A hypothesis test is constructed to test the reliability of
the system against an alternative.

Ho : Reliability = R0

H1 : Reliability < R0

The null hypothesis covers the case where the system is
ultrareliable. The alternative covers the case where the
system fails to meet the reliability requirement. The �
error is the probability of rejecting the null hypothesis
when it is true (i.e. producer's risk). The � error is the
probability of accepting the null hypothesis when it is
false (i.e. consumer's risk).
There are two basic experimental approaches|(1)

testing with replacement and (2) testing without re-
placement. In either case, one places n items on test.
The test is �nished when r failures have been observed.
In the �rst case, when a device fails a new device is put
on test in its place. In the second case, a failed device
is not replaced. The tester chooses values of n and r to
obtain the desired levels of the � and � errors. In gen-
eral, the larger r and n are, the smaller the statistical
testing errors are.
It is necessary to assume some distribution for the

time-to-failure of the test specimen. For simplicity, we
will assume that the distribution is exponential.11 The
test then can be reduced to a test on exponential means,
using the transformation:

� =
t

�ln[R(t)]

The expected time on test can then be calculated as a
function of r and n. The expected time on test, Dt, for
the replacement case is:

Dt = �o
r

n
(9)

where �o is the mean time to failure of the test specimen.
The expected time on test for the non-replacement case
is:

Dt = �o

rX
j=1

1

n� j + 1
(10)

In order to calculate the � and � errors, a speci�c
value of the alternative mean must be selected. Thus,
the hypothesis test becomes:

Ho : � = �o
H1 : � = �a

11If the failure times follow a Weibull distribution with

known shape parameter, the data can be transformed into

variables having exponential distributions before the test is

applied.

9

A reasonable alternative hypothesis is that the reliabil-
ity at 10 hours is 1 � 10�8 or that �a = 109. The test
statistic Tr is given by

Tr = (n� r)Xr +
rX

i=1

Xi

for the non-replacement case and

Tr = nXr

for the \replacement case". The critical value Tc (for
which the null hypothesis should be rejected whenever
Tr � Tc) can be determined as a function of � and r:

Tc = �o
�2
2r;�

2

where �2�;� is the � percentile of the chi-square distribu-
tion with � degrees of freedom. Given a choice of r and
� the value of the \best" critical region is determined
by this formula. The � error can be calculated from

Tc = �1
�2
2r;1��

2

Neither of the above equations can be solved until r
is determined. However, the following formula can be
derived from them:

�22r;�

�2
2r;1��

=
�a

�o
(11)

Given the desired � and � errors, one chooses the small-
est r which satis�es this equation.

Example 1

Suppose that we wish to test:

Ho : �o = 1010

H1 : �a = 109

For � = 0:05 and � = 0:01, the smallest r satisfying
equation (11) is 3 (using a chi-square table). Thus, the

critical region is �o
�2
2r;�

2
= 1010(1:635)=2 = 8:18� 109.

The experimenter can choose any value of n greater than
r. The larger n is, the shorter the expected time on test
is. For the replacement case, the expected time on test

is �o
r
n
= 3�10

10

n
:

no. of replicates (n) Expected Test Duration Dt

10 3� 109 hours
100 3� 108 hours
10000 3� 106 hours

Even with 10000 test specimens, the expected test time
is 342 years.

Example 2

Suppose that we wish to test:

Ho : �o = 1010

H1 : �a = 109

Given � = 0:05 and r = 1, the � error can be calculated.

First the critical region is �o
�2
2r;�

2
= 1010[0:1026]=2 =

5:13� 108. From a chi-square table, the � error can be
seen to be greater than 0.50.

Illustrative Table

For �o = 1010 and �a = 109,

�a

�o
�

10�9

10�8
= 0:1

The following relationship exists between �, r, and �:

� r �

.01 5 � .005

.01 3 � .20

.01 2 � .50

.05 3 � .02

.05 2 � .10

.05 1 � .50

.10 3 � .005

.10 2 � .03

.10 1 � .25

The power of the test 1 � � changes drastically with
changes in r. Clearly r must be at least 2 to have a
reasonable value for the beta error.

Acknowledgements

The authors are grateful to Dr. AlanWhite for his many
helpful comments and to the anonymous reviewers for
their careful reviews and many helpful suggestions.

References

[1] Abdalla-Ghaly, A. A., and P. Y. Chan, a.

B. L. Evaluation of competing reliability predic-
tions. IEEE Transactions on Software Engineering

(1986), 950{967.

[2] Avizienis, A. The n-version approach to fault-
tolerant software. IEEE Transactions on Software

Engineering (Dec. 1985), 1491{1501.

[3] Joyce, E. Software bugs: A matter of life and
liability. Datamation (May 1987).

10

[4] Keiller, P. A., and Miller, D. R. On the use
and the performance of software reliability growth
models. Reliability Engineering and System Safety

(1991), 95{117.

[5] Knight, J. C., and Leveson, N. G. An exper-
imental evaluation of the assumptions of indepen-
dence in multiversion programming. IEEE Trans-

actions on Software Engineering SE-12, 1 (Jan.
1986), 96{109.

[6] Knight, J. C., and Leveson, N. G. A reply to
the criticisms of the Knight & Leveson experiment.
ACM SIGSOFT Software Engineering Notes (Jan.
1990).

[7] Leveson, N. G. Software safety: What, why, and
how. Computing Surveys 18, 2 (June 1986).

[8] Littlewood, B. Stochastic reliability-growth: A
model for fault-removal in computer programs and
hardware designs. IEEE Transactions on Reliabil-

ity (1981), 313{320.

[9] Littlewood, B. Predicting software reliabil-
ity. Philosophical Transactions of the Royal Society
(London) (1989), 513{526.

[10] Littlewood, B., and Keiller, P. A. Adaptive
software reliability modeling. In 14th International
Symposium on Fault-Tolerant Computing (1984),
IEEE Computer Society Press, pp. 108{113.

[11] Mann, N. R., Schafer, R. E., and Singpur-

walla, N. D. Methods for Statistical Analysis of

Reliability and Life Data. John Wiley & Sons, New
York, 1974.

[12] Miller, D. Making statistical inferences about
software reliability. NASA Contractor Report 4197,
Nov. 1988.

[13] Nagel, P. M., and Skrivan, J. A. Software re-
liability: Repetitive run experimentation and mod-
eling. NASA Contractor Report 165836, Feb. 1982.

[14] Peterson, I. A digital matter of life and death.
Science News (Mar. 1988).

[15] Scott, R. K., Gault, J. W., and McAllis-

ter, D. F. Fault-tolerant software reliability mod-
eling. IEEE Transactions on Software Engineering

(May 1987).

[16] Shimeall, T. J., and Leveson, N. G. An em-
pirical comparison of software fault-tolerance and
fault elimination. IEEE Transactions on Software

Engineering (Feb. 1991), 173{183.

11

